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• The use of the classical Hartree term in implementations of KS-DFT leads to
self-interaction effects.

• A great number of functionals has been developed over the years with
the purpose of removing the effects of self- interaction from the theory.

• We have now solved uniquely, analytically and in closed form the
self-interaction problem in Kohn-Sham Density Functional Theory.

• We will describe how this is done, and show results of calculations for realistic
atomic systems and will compare with competing methodologies
(OEP, exact exchange).

• The underlying formalism is that of Density Function Theory(DFT),
in which the independent variable is the density n(r).

• Functional derivatives taken only with respect to the density
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Hohenberg and Kohn have shown that

real system fictitious non-interacting system
with the same density 
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Kohn-Sham equations

 is a Slater Determinant build of fi

exchange term:

pair density

The exchange term depends only implicitly on the density! 
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- expand orbitals in orthonormal and complete basis

- basis written explicitly in term of the density

- differentiate the expansion (functional differentiation)

- get the potential
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new basis as functional of n:

with

John E. Harriman, Phys. Rev. A 24, 680 (1981)
Gil Zumbach and Klaus Maschke, Phys. Rev. A 2, 544 (1983)

The equidensity basis is complete and orthonormal (in r) for any density !!! 

k=(kx,ky,kz) 

a representation of orbitals in this basis is possible



Lawrence Livermore National Laboratory LLNL-CONF-533132
7



Lawrence Livermore National Laboratory LLNL-CONF-533132
8



Lawrence Livermore National Laboratory LLNL-CONF-533132
9



Lawrence Livermore National Laboratory LLNL-CONF-533132
10

r [a.u.]

Z

r Vx
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Z Symbol Name Exp x-SIF x-OEP HF
2 He Helium -2.904 -2.862 -2.862 -2.862
3 Li Lithium -7.47806 -7.432 -7.433 -7.433
4 Be Beryllium -14.66736 -14.571 -14.572 -14.573
5 B Boron -24.65391 -24.527 -24.528 -24.529
6 C Carbon -37.8450 -37.687 -37.689 -37.690
7 N Nitrogen -54.5892 -54.401 -54.403 -54.405
8 O Oxygen -75.0673 -74.809 -74.812 -74.814
9 F Fluorine -99.7339 -99.406 -99.409 -99.411

10 Ne Neon -128.9376 -128.542 -128.545 -128.547
11 Na Sodium -162.2546 -161.852 -161.857 -161.859
12 Mg Magnesium -200.053 -199.606 -199.612 -199.615
13 Al Aluminum -242.346 -241.868 -241.873 -241.877
14 Si Silicon -289.359 -288.845 -288.851 -288.854
15 P Phosphorus -341.259 -340.709 -340.715 -340.719
16 S Sulfur -398.110 -397.495 -397.502 -397.506
17 Cl Chlorine -460.148 -459.470 -459.478 -459.483
18 Ar Argon -527.540 -526.804 -526.812 -526.817

energies in H we find:
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DFT condition for the ground state:

OEP condition for the ground state:

- The domain of search within the OEP is augmented compared to the DFT domain.

- This can lead to lower energies than DFT results.
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M. K. Harbola and V. Sahni,  Phys. Rev. Lett. 62, 489 (1989)

corresponding electric field 

The potential is the work bringing
an electron from infinity to r:

using classical electrodynamics

Conjecture:
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 a solution to the self interaction problem (for non-periodic systems)
was presented, using only derivatives with respect to the density

 analytic, closed form treatment of the Coulomb energy within 
Kohn-Sham density functional theory 

 an explicit expression for calculating the Coulomb potential, 
avoiding self-interaction effects by construction

 quantum mechanically correct form of the Coulomb energy using the pair density

 fulfills the 2nd Hohenberg-Kohn theorem: no lower than ground state energy

 formalism and code is developed for all non-periodic systems (so far) 
(need: all occupied orbitals, boundary conditions for Poisson solver)

 further developments: periodic systems

Reference: Gonis, MD, Nicholson, Stocks, Solid State Communications, 2012, accepted 




